Wear Properties of Plasma Transferred Arc Fe-based Coatings Reinforced by Spherical WC Particles

2019 
Fe-based coatings reinforced by spherical WC particles were produced on the 304 stainless steel by plasma transferred arc (PTA) to enhance the surface wear properties. Three different Fe/WC composite powder mixtures containing 0wt%, 30wt%, and 60wt% of WC were investigated. The microstructure and phase composition of the Fe/WC composite PTA coatings were evaluated systemically by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The wear properties of the three fabricated PTA coatings were investigated on a BRUKER UMT TriboLab. The morphologies of the worn tracks and wear debris were characterized by using SEM and 3D non-contract profiler. The experimental results reveal that the microhardness on the cross-section and the wear resistance of the fabricated coatings increase dramatically with the increasing adding WC contents. The coating containing 60wt% of WC possesses excellent wear resistance validated by the lower coefficients of friction (COF), narrower and shallower wear tracks and smaller wear rate. In the pure Fe-based coating, the main wear mechanism is the combination of adhesion and oxidative wear. Adhesive and two-body abrasive wear are predominated in the coating containing 30wt% of WC, whereas threebody abrasion wear mechanism is predominated in the coating containing 60wt% of WC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    13
    Citations
    NaN
    KQI
    []