Effects of the Novel α7 Nicotinic Acetylcholine Receptor Agonist ABT-107 on Sensory Gating in DBA/2 Mice: Pharmacodynamic Characterization

2012 
Nicotinic acetylcholine receptor (nAChR) agonists improve sensory gating deficits in animal models and schizophrenic patients. The aim of this study was to determine whether the novel and selective α7 nAChR full agonist 5-(6-[(3 R )-1-azabicyclo[2.2.2]oct-3-yloxy]pyridazin-3-yl)-1 H -indole (ABT-107) improves sensory gating deficits in DBA/2 mice. Sensory gating was measured by recording hippocampal-evoked potential P20-N40 waves and determining gating test/conditioning (T/C) ratios in a paired auditory stimulus paradigm. ABT-107 at 0.1 μmol/kg (average plasma concentration of 1.1 ng/ml) significantly improved sensory gating by lowering T/C ratios during a 30-min period after administration in unanesthetized DBA/2 mice. ABT-107 at 1.0 μmol/kg was ineffective at 30 min after administration when average plasma levels were 13.5 ng/ml. However, the 1.0 μmol/kg dose was effective 180 min after administration when plasma concentration had fallen to 1.9 ng/ml. ABT-107 (0.1 μmol/kg) also improved sensory gating in anesthetized DBA/2 mice pretreated with α7 nAChR-desensitizing doses of nicotine (6.2 μmol/kg) or ABT-107 (0.1 μmol/kg) itself. Moreover, repeated b.i.d. dosing of ABT-107 (0.1 μmol/kg) was as efficacious as a single dose. The acute efficacy of ABT-107 (0.1 μmol/kg) was blocked by the nAChR antagonist methyllycaconitine, but not by the α4β2 nAChR antagonist dihydro-β-erythroidine. These studies demonstrate that ABT-107 improves sensory gating through the activation of nAChRs, and efficacy is sustained under conditions of repeated dosing or with prior nAChR activation with nicotine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    17
    Citations
    NaN
    KQI
    []