Double σ-Aromaticity in a Planar Zinc-Doped Gold Cluster: Au9Zn.

2021 
The strong relativistic effects result in many interesting chemical and physical properties for gold and gold compounds. One of the most surprising findings has been that small gold clusters prefer planar structures. Dopants can be used to tune the electronic and structural properties of gold nanoclusters. Here we report an experimental and theoretical investigation of a Zn-doped gold cluster, Au9Zn-. Photoelectron spectroscopy reveals that Au9Zn- is a highly stable electronic system with an electron binding energy of 4.27 eV. Quantum chemical studies show that the global minimum of Au9Zn- has a D3h structure with a closed-shell electron configuration (1A1'), which can be viewed as replacing the central Au atom by Zn in the open-shell parent Au10- cluster. The high electronic stability of Au9Zn- is corroborated by its extremely large HOMO-LUMO gap of 3.3 eV. Chemical bonding analyses revealed that the D3h Au9Zn- are bonded by two sets of delocalized σ bonds, giving rise to double σ aromaticity and its remarkable stability. Two planar low-lying isomers are also observed, corresponding to a similar triangular structure with the Zn atom on the edge and another one with one of the corner Au atoms moved to the edge of the triangle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    107
    References
    3
    Citations
    NaN
    KQI
    []