Fasudil enhanced differentiation of BMSCs in vivo and vitro, involvement of P38 signaling pathway

2020 
Abstract Bone mesenchymal stem cells (BMSCs) are a well-known donor graft source due to their potential for self-renewal and differentiation into multi-lineage cell types, including osteoblasts that are critical for fracture healing. Fasudil (FAS), a Rho kinase inhibitor, has been proven to induce the differentiation of bone marrow stem cells (BMSCs) into neuron-like cells. However, its role in the osteogenesis of BMSCs remain uncertain. Herein, we for the first time studied the effects of FAS on osteogenic differentiation in a mouse fracture model and further explored the involved mechanisms in mouse BMSCs. The results showed that FAS stimulated bone formation in the fracture mouse model. Additionally, at 30 μM, FAS significantly promotes alkaline phosphatase activity, mineralization, and the expression of osteogenic markers COL-1, RUNX2 and OCN in murine BMSCs. Blocking of P38 by SB202190 significantly reversed the effects of FAS, in vitro, suggesting that P38, but not ERK or JNK activation is required for FAS-induced osteogenesis. Collectively, our results indicate that FAS may be a promising agent for promoting fracture healing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []