Microstructure and wear resistance performance of Cu–Ni–Mn alloy based hardfacing coatings reinforced by WC particles

2016 
Abstract A Cu–Ni–Mn alloy based hardfacing coating reinforced by WC particles is deposited on steel substrates by a manual oxy-acetylene weld hardfacing method. Microstructure and wear resistance performance of the fabricated hardfacing coatings are investigated. There are no cracks or other defects observed in the hardfacing coating. Uniform distributed WC particles in the composite hardfacing coating are not dissolved, and its volume fraction is up to about 63%. A sound bond is formed at the interface of WC and Cu–Ni–Mn alloy, and the bond between the coating and the steel substrate is reliable. With silica sands, the wear resistance performance of the composite hardfacing coatings is about 4 times better than that of the high-Cr cast iron, and its volume loss presents approximately a linear relationship with the sliding distance. The main wear mechanisms are the plastic extrusion of the Cu–Ni–Mn matrix and the fracturing of WC-reinforcement particles under three-body abrasive wear condition in this paper.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    44
    Citations
    NaN
    KQI
    []