Tritium self-sufficiency time and inventory evolution for solid-type breeding blanket materials for DEMO

2011 
Abstract One of the primary functions of a fusion blanket is to generate enough tritium to make a fusion power plant (FPP) self-sufficient. To ensure that there is satisfactory tritium production in a real plant the tritium breeding ratio (TBR) in the blanket must be greater than 1 +  M , where M is the breeding margin. For solid-type blanket designs, the initial TBR must be significantly higher than 1 +  M , since the blanket TBR will be reduced over time as the lithium fuel is consumed. The rate of TBR reduction will impact on the overall blanket self-sufficiency time, the time in which the net tritium inventory of the system is positive. DEMO relevant blanket materials, Li 4 SiO 4 and Li 2 TiO 3 , are investigated by computational simulation using radiation transport tools coupled with time-dependent inventory calculations. The results include tritium inventory assessments and depletion of breeding materials over time, which enable self-sufficiency times and maximum surplus tritium inventories to be evaluated, which are essential quantities to determine to allow one to design a credible FPP using solid-type breeding material concepts. The blanket concepts investigated show self-sufficiency times of several years in some cases and maximum surplus inventories of up to a few tens of kg.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    12
    Citations
    NaN
    KQI
    []