DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity

2021 
Signal transmission in neurons goes along with changes in the transmembrane potential. To report them, different approaches including optical voltage-sensing dyes and genetically encoded voltage indicators have evolved. Here, we present a DNA nanotechnology-based system. Using DNA origami, we incorporate and optimize different properties such as membrane targeting and voltage sensing modularly. As a sensing unit, we use a hydrophobic red dye anchored to the membrane and an anionic green dye at the DNA connecting the DNA origami and the membrane dye anchor. Voltage-induced displacement of the anionic donor unit is read out by changes of Fluorescence Resonance Energy Transfer (FRET) of single sensors attached to liposomes. They show a FRET change of [~]5% for {Delta}{Psi}=100 mV and allow adapting the potential range of highest sensitivity. Further, the working mechanism is rationalized by molecular dynamics simulations. Our approach holds potential for the application as non-genetically encoded sensors at membranes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []