Testing the reality of Wigner's friend's experience

2019 
Does quantum theory apply to observers? A resurgence of interest in the long-standing Wigner's friend paradox has shed new light on this fundamental question. Brukner introduced a scenario with two separated but entangled friends. Here, building on that work, we rigorously prove that if quantum evolution is controllable on the scale of an observer, then one of the following three assumptions must be false: "freedom of choice", "locality", or "observer-independent facts" (i.e. that every observed event exists absolutely, not relatively). We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those assumptions, new inequalities can be derived, in a theory-independent manner, which are violated by quantum correlations. We demonstrate this in a proof-of-principle experiment where a photon's path is deemed an observer. We discuss how this new theorem places strictly stronger constraints on quantum reality than Bell's theorem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []