CWC: A Companion Write Cache for Energy-Aware Multi-Level Spin-Transfer Torque RAM Cache Design

2015 
Due to its large leakage power and low density, the conventional SARM becomes less appealing to implement the large on-chip cache due to energy issue. Emerging non-volatile memory technologies, such as phase change memory (PCM) and spin-transfer torque RAM (STT-RAM), have advantages of low leakage power and high density, which makes them good candidates for on-chip cache. In particular, STT-RAM has longer endurance and shorter access latency over PCM. There are two kinds of STT-RAM so far: single-level cell (SLC) STT-RAM and multi-level cell (MLC) STT-RAM. Compared to the SLC STT-RAM, the MLC STT-RAM has higher density and lower leakage power, which makes it a even more promising candidate for future on-chip cache. However, MLC STT-RAM improves density at the cost of almost doubled write latency and energy compared to the SLC STT-RAM. These drawbacks degrade the system performance and diminish the energy benefits. To alleviate these problems, we propose a novel cache organization, companion write cache (CWC), which is a small fully associative SRAM cache, working with the main MLC STT-RAM cache in a master-and-servant way. The key function of CWC is to absorb the energy-consuming write updates from the MLC STT-RAM cache. The experimental results are promising that CWC can greatly reduce the write energy and dynamic energy, improve the performance and endurance of MLC STT-RAM cache compared to a baseline.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    3
    Citations
    NaN
    KQI
    []