761. Targeted Killing of HIV Infected Cells Using CCR5-Disrupted Anti-HIV-CAR T Cells

2016 
A cure for HIV remains an important treatment goal for 30 million HIV-infected individuals worldwide. Long term control of HIV following a single treatment will require a mechanism to eradicate the latent reservoir of HIV infected cells that are capable of reactivating. A previous phase II clinical trial using an anti-HIV chimeric antigen receptor (αHIV-CAR) targeting the CD4-binding site on HIV envelope was partially effective. To optimize this approach we have developed a series of CARs based on the scFV of broadly neutralizing HIV antibodies targeting four different structural regions of the HIV envelope: the V1/V2 loop, the V3 loop, the CD4 binding site, and the membrane-proximal external region. αHIV-CAR T cells targeting different epitopes were compared and were able to kill > 80% of HIV-infected cells grown in the presence of ART. However, a limitation of αHIV-CAR T cells is that the αHIV-CAR also serves as a receptor for HIV and allows HIV infection of αHIV-CAR T cells. Therefore we disrupted the major co-receptor required for HIV cell entry, CCR5, using a megaTAL nuclease, as a means of protecting the CAR-expressing cells from HIV infection. We used two strategies for achieving these dual modifications in primary human T cells. For both strategies, the CCR5 megaTAL nuclease was delivered by mRNA electroporation, which has previously been shown to induce a high rate of bi-allelic NHEJ-mediated gene disruption. αHIV-CAR expression cassettes were delivered into the host genome via lentiviral vectors (LV), or were targeted to the megaTAL nuclease cleavage site in CCR5 using an adeno-associated virus (AAV) that included CCR5 homology arms. Both strategies resulted in stable expression of the CAR construct and specific activation of CAR+ T cells in the presence of an HIV+ cell line. In the presence of actively replicating virus, CCR5-megaTAL treated CAR+ T cells out-performed CAR+ T cells generated by LV delivery alone as measured by reduction in HIV capsid protein. To enable testing in non-human primates (NHP), we re-optimized the cell-editing protocol with NHP lymphocytes. Primary T cells from pigtail macaques were successfully transfected with CCR5 megaTAL mRNA and achieved a CCR5 disruption rate of 50%. Cells were subsequently transduced with αHIV-CAR LV resulting in ~70% of manipulated cells with αHIV-CAR. Expansion of the cells in vitro resulted in 60-fold expansion over 8 days. CAR+ NHP cells specifically killed HIV infected human cells demonstrating that NHP-derived αHIV-CAR+ T cells retained killing function. In conclusion, it is feasible to construct αHIV-CAR+ T cells that are protected from HIV infection in human and NHP cells, and warrants further study in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []