Origin of Non-Gaussian Velocity Distribution Found in Freestanding Graphene Membranes

2019 
In this study, an analytic derivation is made for the truncated Cauchy-Lorentz velocity distribution experimentally observed in freestanding graphene membranes. Three methods are used and discussed, including the Fokker-Planck-Kolmogorov equation, the maximum nonsymmetric entropy principle, and the Bayesian inference. From these results, a physical mechanism is provided for the non-Gaussian velocity distribution in terms of carbon atom arrangement in freestanding graphene. Moreover, a new theoretical foundation is proposed for future studies of the anomalous dynamics of carbon atoms in graphene membranes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []