SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity

2004 
Abstract The humanization of mAbs by complementarity-determining region (CDR)-grafting has become a standard procedure to improve the clinical utility of xenogeneic Abs by reducing human anti-murine Ab (HAMA) responses elicited in patients. However, CDR-grafted humanized Abs may still evoke anti-V region responses when administered in patients. To minimize anti-V region responses, the Ab may be humanized by grafting onto the human templates only the specificity-determining residues (SDRs), the residues that are essential for the surface complementarity of the Ab and its ligand. Typically, humanization of an Ab, whether by CDR or SDR grafting, involves the use of a single human template for the entire VL or VH domain of an Ab. We hypothesized, however, that the homology between the human template sequences and mAb to be humanized may be maximized by using templates from multiple human germline sequences corresponding to the different segments of the variable domain. This could be more advantageous in reducing the potential immunogenicity of the humanized Ab. This report describes the SDR grafting of the murine anti-carcinoembryonic antigen (CEA) mAb COL-1 using three different human germline V-kappa sequences as templates for the VL CDRs and another human template for the VL frameworks. In competition RIAs, the SDR-grafted COL-1 (HuCOL-1 SDR ) completely inhibited the binding of radiolabeled murine COL-1 (mCOL-1) to CEA, and showed that its binding affinity is comparable to that of the CDR-grafted Ab (HuCOL-1). The HuCOL-1 SDR showed similar binding reactivity to the CEA expressed on the surface of a tumor cell line as the HuCOL-1. More importantly, compared to HuCOL-1 and the “abbreviated” CDR-grafted Ab, HuCOL-1 SDR showed lower reactivity to patients’ sera carrying anti-V region Abs to mCOL-1. HuCOL-1 SDR , which shows a lower sera reactivity than that of the parental Abs while retaining its Ag-binding property, is a potentially useful clinical reagent. To the best of our knowledge, this is the first time a VL or VH domain of an Ab has been humanized by grafting the SDRs onto a human template comprised of several Ab sequences. We have shown that humanization of an Ab can be optimized using multiple human templates for a single variable domain of an Ab. This approach maximizes the homology between the target Ab and the human templates in both the frameworks and the CDRs by choosing as the template the human sequence that displays the highest local sequence identity to the frameworks and to each of the CDRs of the target Ab.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    37
    Citations
    NaN
    KQI
    []