Fundamental Study on Sulfur Attack and Coking of LNG Rocket Engines

2009 
Liquified Natural Gas (LNG) is one of the most promising propellant for near future space transportation rocket engine because of its low cost and fewer handling concerns. However, for LNG propellant, erosion of engine material by sulfur (sulfur attack) and coking by LNG pyrolysis are significant problems in a regenerative cooling passage. In this study, the effects of sulfur attack and coking are experimentally evaluated for material candidates such as Inconel600, SUS316, Hastelloy-X, and some copper alloys. In the sulfur attack tests, EPMA and Raman analysis indicate that metallic sulfide can be observed only on the surface and XRD analysis indicates that sulfur attack are hardly recognized for all of material in the test conditions. In coking tests, it is clear that coking of methane with 5% propane can proceed more than those of pure methane. The thermal decomposition temperature is significantly decreased by catalytic effects of Ni in engine material. The results of coking tests will be included in the design criteria of combustion chamber, nozzle of the LNG rocket engines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    6
    Citations
    NaN
    KQI
    []