Carbazole Dye‐Sensitized Solar Cells Studied from Femtoseconds to Seconds—Effect of Additives in Cobalt‐ and Iodide‐Based Electrolytes

2015 
: Comprehensive studies of all charge-separation processes in efficient carbazole dye-sensitized solar cells are correlated with their photovoltaic parameters. An important role of partial, fast electron recombination from the semiconductor nanoparticles to the oxidized dye is revealed; this takes place on the picosecond and sub-nanosecond timescales. The charge-transfer dynamics in cobalt tris(bipyridyl) based electrolytes and iodide-based electrolyte is observed to depend on potential-determining additives in a similar way. Upon addition of 0.5 M 4-tert-butylpiridine to both types of electrolytes, the stability of the cells is greatly improved; the cell photovoltage increases by 150-200 mV, the electron injection rate decreases about five times (from 5 to 1 ps(-1) ), and fast recombination slows down about two to three times. Dye regeneration proceeds at a rate of about 1 μs(-1) in all electrolytes. Electron recombination from titania to cobalt electrolytes is much faster than that to iodide ones.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    12
    Citations
    NaN
    KQI
    []