A Hybrid Monte‐Carlo sampling smoother for four dimensional data assimilation

2017 
This paper constructs an ensemble-based sampling smoother for four-dimensional data assimilation using a Hybrid/Hamiltonian Monte-Carlo approach. The smoother samples efficiently from the posterior probability density of the solution at the initial time. Unlike the well-known ensemble Kalman smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally accommodates non-Gaussian errors and non-linear model dynamics and observation operators. Unlike the four-dimensional variational met\-hod, which only finds a mode of the posterior distribution, the smoother provides an estimate of the posterior uncertainty. One can use the ensemble mean as the minimum variance estimate of the state, or can use the ensemble in conjunction with the variational approach to estimate the background errors for subsequent assimilation windows. Numerical results demonstrate the advantages of the proposed method compared to the traditional variational and ensemble-based smoothing methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    16
    Citations
    NaN
    KQI
    []