The Sloan Digital Sky Survey Reverberation Mapping Project: Initial CIV Lag Results from Four Years of Data

We present reverberation-mapping lags and black-hole mass measurements using the CIV 1549 broad emission line from a sample of 349 quasars monitored as a part of the Sloan Digital Sky Survey Reverberation Mapping Project. Our data span four years of spectroscopic and photometric monitoring for a total baseline of 1300 days. We report significant time delays between the continuum and the CIV 1549 emission line in 52 quasars, with an estimated false-positive detection rate of 10%. Our analysis of marginal lag measurements indicates that there are on the order of 100 additional lags that should be recoverable by adding more years of data from SDSS-RM. We use our measurements to calculate black-hole masses and fit an updated CIV radius-luminosity relationship. Our results significantly increase the sample of quasars with CIV RM results, with the quasars spanning two orders of magnitude in luminosity toward the high-luminosity end of the CIV radius-luminosity relation. In addition, these quasars are located at among the highest redshifts (z~1.4-2.8) of quasars with black hole masses measured with reverberation mapping. This work constitutes the first large sample of CIV reverberation-mapping measurements in more than a dozen quasars, demonstrating the utility of multi-object reverberation mapping campaigns.
    • Correction
    • Source
    • Cite
    • Save