Low Density Molecular Gas in the Galaxy

1999 
The distributions and physical conditions in molecular gas in the interstellar medium have been investigated in both the Galaxy and towards external galaxies. For example, Galactic plane surveys in the CO J =1-0 line with the Columbia 1.2-m telescope and with the Five College Radio Astronomy Observatory (FCRAO) 14-m telescopes have been able to trace spiral arms more clearly than HI surveys have been able to reveal, and indicate that most of molecular mass is contained in Giant Molecular Clouds (GMCs). Extensive maps of the whole Milky Way showed two prominent features, the 4-kpc molecular ring and the Galactic center. The physical conditions in the Galaxy have been studied by comparing the intensity of CO J =1-0 line with those of other lines, e.g., 13 CO J =1-0, higher J transitions of CO, and dense gas tracers such as HCO + , CS, and HCN. Previous studies were however strongly biased towards regions where CO emission was known to be intense. The radial distribution of molecular hydrogen shows that most of the H 2 gas which is indirectly traced by observations of its associated CO emission, originates from the inner Galaxy (Dame 1993). Extending outwards from a galacto-centric distance of ~7 kpc, the H 2 mass surface density decreases dramatically, and HI dominates over H 2 in the outer Galaxy. What are physical conditions of molecular gas where the CO emission is relatively weak, and can we really trace all of the molecular gas through obervations of CO? These kinds of problems have not been solved yet, but are addressed in our study.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []