Pilocarpine Protects Cobalt Chloride-induced Apoptosis of RGC-5 Cells: Involvement of Muscarinic Receptors and HIF-1α Pathway

2010 
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    28
    Citations
    NaN
    KQI
    []