High‐Efficiency All‐Dielectric Metalenses for Mid‐Infrared Imaging

2017 
Metasurfaces-based flat optics, which can make use of existing foundry planar technology for high-throughput production, allows the arbitrary control of the wavefront and polarization of light within subwavelength thick structures. So far, however, flat optics for the mid-infrared (MIR) has received far less attention than devices operating at visible or near-infrared wavelengths. Here, polarization-insensitive, highly efficient, all-dielectric metalenses operating in the MIR around 4 µm are demonstrated. The metalens is designed using rigorous coupled-wave analysis and is based on hydrogenated amorphous silicon (α-Si:H) nanopillars supported by an MgF2 substrate. The metalenses produce close to a diffraction-limited focal spot and can resolve structures on the wavelength scale where the focusing efficiency reaches 78% at a magnification of 120×. The imaging qualities are comparable with commercial bulk-molded chalcogenide aspheric lenses. These results provide novel solutions for existing MIR technology and nurture new functionalities with the population of miniaturized and planarized optoelectrical devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    50
    Citations
    NaN
    KQI
    []