Observation of orbital order in the Van der Waals material 1T-TiSe2.

2021 
Besides magnetic and charge order, regular arrangements of orbital occupation constitute a fundamental order parameter of condensed matter physics. Even though orbital order is difficult to identify directly in experiments, its presence was firmly established in a number of strongly correlated, three-dimensional Mott insulators. Here, reporting resonant X-ray scattering experiments on the layered Van der Waals compound $1T$-TiSe$_2$, we establish the emergence of orbital order in a weakly correlated, quasi-two-dimensional material. Our experimental scattering results are consistent with first-principles calculations that bring to the fore a generic mechanism of close interplay between charge redistribution, lattice displacements, and orbital order. It demonstrates the essential role that orbital degrees of freedom play in TiSe$_2$, and their importance throughout the family of correlated Van der Waals materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []