Genetic suppression of phenotypes arising from mutations in dystrophin-related genes in Caenorhabditis elegans

2000 
Abstract Background: Dystrophin is the product of the gene that is mutated in Duchenne muscular dystrophy (DMD), a progressive neuromuscular disease for which no treatment is available. Mice carrying a mutation in the gene for dystrophin ( mdx mice) display only a mild phenotype, but it is aggravated when combined with a mutation in the MyoD gene. The nematode worm Caenorhabditis elegans has a dystrophin homologue ( dys-1 ), but null mutations in dys-1 do not result in muscle degeneration. Results: We generated worms carrying both the dys-1 null mutation cx18 , and a weak mutation, cc561ts , of the C. elegans MyoD homologue hlh-1 . The double mutants displayed a time-dependent impairment of locomotion and egg laying, a phenotype not seen in the single mutants, and extensive muscle degeneration. This result allowed us to look for genes that, when misexpressed, could suppress the dys-1; hlh-1 phenotype. When overexpressed, the dyc-1 gene — whose loss-of-function phenotype resembles that of dys-1 — partially suppressed the dys-1; hlh-1 phenotype. The dyc-1 gene encodes a novel protein sharing similarities with the mammalian neural nitric oxide synthase (nNOS)-binding protein CAPON, and is expressed in the muscles of the worm. Conclusions: As a C. elegans model for dystrophin-dependent myopathy, the dys-1; hlh-1 worms should permit the identification of genes, and ultimately drugs, that would reverse the muscle degeneration in this model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    94
    Citations
    NaN
    KQI
    []