Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi.

2021 
Abstract Rooted cuttings from two carnation (Dianthus caryophyllus L.) cultivars showing contrasting responses to the vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod) were inoculated with this phytopathogen, and some of the biochemical responses associated with flavonoid biosynthesis were investigated in the roots. The resistant cultivar (‘Golem’) showed a significant increase in the levels of phenolic and flavonoid compounds at 48–96 h post-inoculation (hpi) (α = 0.05). LC-MS-based analysis indicated that the flavonoids mainly included flavanol-type glycosides, especially quercetin and kaempferol aglycones. Quantification of the mRNA levels of genes encoding CHS (Chalcone Synthase), CHI (Chalcone Isomerase), FLS (Flavonol Synthase), and the transcription factor MYB11 by using reverse transcription quantitative polymerase chain reaction (RT-qPCR) indicated that the resistant cultivar exhibited higher expression levels of these genes and, therefore, showed more flavonoid accumulation at 96 hpi. The differences in the temporal regulation of the assessed variables during infection support the idea that the early expression of enzymes of the flavonoid biosynthesis pathway in carnation roots is linked to a resistance response to the hemibiotrophic pathogen Fod race 2. The present experimental approach is the first report describing the molecular mechanisms underlying flavonoid biosynthesis in carnation roots during their interaction with Fod.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    0
    Citations
    NaN
    KQI
    []