Effects of Catalyst Phase on the Hydrogen Evolution Reaction of Water Splitting: Preparation of Phase-Pure Films of FeP, Fe2P, and Fe3P and Their Relative Catalytic Activities

2018 
The comparative catalytic activities of iron phosphides, FexP (x = 1–3), have been established with phase-pure material grown by chemical vapor deposition (CVD) from single-source organometallic precursors. This is the first report of the preparation of phase-pure thin films of FeP and Fe2P, and their identity was established with scanning-electron microscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction. All materials were deposited on fluorine-doped tin oxide (FTO) for evaluation of their activities toward the hydrogen evolution reaction (HER) of water splitting in 0.5 M H2SO4. HER activity follows the trend Fe3P > Fe2P > FeP, with Fe3P having the lowest overpotential of 49 mV at a current density of 10 mA cm–2. Density functional theory (DFT) calculations are congruent with the observed activity trend with hydrogen binding favoring the iron-rich terminating surfaces of Fe3P and Fe2P over the iron-poor terminating surfaces of FeP. The results present a clear trend of activity with iron...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    76
    Citations
    NaN
    KQI
    []