Possible classification of the self-oscillatory spouting regimes of plane vertical submerged jets of a heavy fluid

2009 
New results of an experimental investigation of self-oscillatory regimes of plane vertical jet spouting from beneath the free surface of a heavy incompressible fluid are discussed. The experiments were performed on a setup with discharge over a weir. The range of dimensionless jet submergence values on which bifurcation change of spouting regime is observable is studied. It is established that on the Froude number and dimensionless jet submergence ranges considered in the study six characteristic spouting regimes differing in free surface shape and self-oscillation frequency can exist. It is shown that these regimes can be subdivided into three typical groups with respect to the dependence of the self-oscillation period on the jet flow rate. A dimensionless parameter that makes it possible to identify the boundaries of the bifurcation change in spouting regimes is obtained for each of these groups. For certain spouting regimes without the formation of free jets numerical calculations are carried out using the STAR-CD software package; the calculated results are in good agreement with experimental data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    6
    Citations
    NaN
    KQI
    []