Functional Relevance of CpG Island Length for Regulation of Gene Expression

2011 
CpG islands mark CpG-enriched regions in otherwise CpG-depleted vertebrate genomes. While the regulatory importance of CpG islands is widely accepted, it is little appreciated that CpG islands vary greatly in lengths. For example, CpG islands in the human genome vary ∼30-fold in their lengths. Here we report findings suggesting that the lengths of CpG islands have functional consequences. Specifically, we show that promoters associated with long CpG islands (long-CGI promoters) are distinct from other promoters. First, long-CGI promoters are uniquely associated with genes with an intermediate level of gene expression breadths. Notably, intermediate expression breadths require the most complex mode of gene regulation, from the standpoint of information content. Second, long-CGI promoters encode more RNA polymerase II (Polr2a) binding sites than other promoters. Third, the actual binding patterns of Polr2a occur in a more tissue-specific manner in long-CGI promoters compared to other CGI promoters. Moreover, long-CGI promoters contain the largest numbers of experimentally characterized transcription start sites compared to other promoters, and the types of transcription start sites in them are biased toward tissue-specific patterns of gene expression. Finally, long-CGI promoters are preferentially associated with genes involved in development and regulation. Together, these findings indicate that functionally relevant variations of CpG islands exist. By investigating consequences of certain CpG island traits, we can gain additional insights into the mechanism and evolution of regulatory complexity of gene expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    48
    Citations
    NaN
    KQI
    []