Structural basis for acyl chain control over glycosphingolipid sorting and vesicular trafficking

2021 
The complex sphingolipids exhibit a diversity of ceramide acyl chain structures that influence their trafficking and intracellular distributions, but how the cell discerns among the different ceramides to affect such sorting remains unknown. To address mechanism, we synthesized a library of GM1 glycosphingolipids with naturally varied acyl chains and quantitatively assessed their sorting among different endocytic pathways. We found that a stretch of at least 14 saturated carbons extending from C1 at the water-bilayer interface dictated lysosomal sorting by exclusion from endosome sorting tubules. Sorting to the lysosome by the C14*-motif was cholesterol dependent. Perturbations of the C14*-motif by unsaturation enabled GM1 entry into endosomal sorting tubules of the recycling and retrograde pathways independently of cholesterol. Unsaturation occurring beyond the C14*-motif in very long acyl chains rescued lysosomal sorting. These results define a structural motif underlying membrane organization of sphingolipids and implicate cholesterol-sphingolipid nanodomain formation in sorting mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    1
    Citations
    NaN
    KQI
    []