Gut microbiota reflect the crowding stress of space shortage, physical and non-physical contact in Brandt’s voles (Lasiopodomys brandtii)

2021 
Abstract Density-dependence plays a critical role in behavior and population regulation of small mammals, which is likely mediated by hormones and gut microbiota. High density-induced crowding effects often cause a combination of various social stresses including space shortage, physical contact and non-physical contact, but their distinct effects on gut microbiota in animals have not been investigated. In this study, we examined the crowding effects of space shortage and physical or non-physical contact stress on serum corticosterone and gut microbiota of Brandt’s voles in both laboratory and field conditions. Our results demonstrated that the space shortage stress showed a more predominant impact on serum corticosterone and gut microbiota of voles than physical or non-physical contact stress; the crowding effects of non-physical contact stress became stronger in high density conditions, while physical contact stress was stronger in a larger group without density effects. High density or group size treatments under both laboratory and semi-natural enclosure conditions significantly increased the relative abundance of key differential taxa, including Bacteroidetes, TM7, S24_7, Streptococcus, and Lactobacillus; while high density treatment decreased the relative abundance of Firmicutes, Staphylococcaceae, Bacteroides, Faecalibacterium, and Adlercreutzia. Our study suggests that high density-induced space shortage and physical contact or non-physical contact stress may play a significant role in behavior and population regulation through altering gut microbiota in small mammals. Our results may also have significant implications in rodent control or health management for livestock.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []