Optimal Milling Conditions for Complex Shaped Thin-Walled Components

2021 
This paper investigates the dynamic behavior of the milling of complex shaped thin-walled components. As an interrupted cutting characterizes the milling process, a detailed study of the tool entrance point in relation to the vibration of the part is performed. Milling tests were performed on two thin-walled workpieces with different static and dynamic characteristics. The rigidity of the milling tool was much higher than the rigidity of the workpiece. End milling of thin-walled components deals with short cutting lengths, contributing to a decrease in the number of regenerative waves on the cutting surface. As a result, there is less than one regenerative wave beginning from relatively low spindle speed. Therefore, vibrations in high-speed milling of thin-walled structures are rather caused by resonance phenomenon than by self-excited oscillation. These findings have been supported by experimental validation where two thin-walled structures have been machined. The worst processing conditions occur when the tool impacts the workpiece when its amplitude of vibration is high.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []