Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions.

2021 
Photoelectrochemical catalysis is an attractive way to provide direct hydrogen production from solar energy. However, solar conversion efficiencies are hindered by the fact that light harvesting has so far been of limited efficiency in the near-infrared region as compared to that in the visible and ultraviolet regions. Here we introduce near-infrared-active photoanodes that feature lattice-matched morphological hetero-nanostructures, a strategy that improves energy conversion efficiency by increasing light-harvesting spectral range and charge separation efficiency simultaneously. Specifically, we demonstrate a near-infrared-active morphological heterojunction comprised of BiSeTe ternary alloy nanotubes and ultrathin nanosheets. The heterojunction’s hierarchical nanostructure separates charges at the lattice-matched interface of the two morphological components, preventing further carrier recombination. As a result, the photoanodes achieve an incident photon-to-current conversion efficiency of 36% at 800 nm in an electrolyte solution containing hole scavengers without a co-catalyst. The solar conversion efficiencies of photoelectrochemical catalysis are hindered by the light harvesting range. Here, the authors use near-infrared-active photoanodes that feature lattice-matched morphological hetero-nanostructures to realize efficient photoelectrochemical hydrogen production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []