Quantum emitter formation in carbon-doped monolayer hexagonal boron nitride.

2021 
Single photon emitters (SPEs) in hexagonal boron nitride (hBN) are promising candidates for quantum light generation. Despite this, techniques to control the formation of hBN SPEs down to the monolayer limit are yet to be demonstrated. Recent experimental and theoretical investigations have suggested that the visible wavelength single photon emitters in hBN originate from carbon-related defects. Here we demonstrate a simple strategy for controlling SPE creation during the chemical vapor deposition growth of monolayer hBN via regulating surface carbon concentration. By increasing surface carbon concentration during hBN growth, we observe increases in carbon doping levels by 2.4 fold for B-C bonds and 1.6 fold for N-C bonds. For the same samples we observe an increase in SPE density from 0.13 to 0.30 emitters/um2. Our simple method enables the reliable creation of hBN SPEs in monolayer samples for the first time, opening the door to advanced 2D quantum state engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []