Derivation of CO2 output from oscillations in arterial pH

1987 
Theory predicts that the rate of rise of the oscillation in arterial CO2 partial pressure (PaCO2) is linearly dependent on CO2 flux from venous blood to alveolar gas. We have measured, in the anesthetized cat, CO2 output (VCO2) and oscillations in arterial pH. The pH signal was differentiated to give the maximum rate of fall of pH on the downstroke of the oscillation (dpH/dt decreases max). Since oscillations in pH are due to oscillations in arterial PCO2, dpH/dt decreases max was considered to be equivalent to the maximum rate of rise of the PCO2 oscillation. VCO2 was increased by ventilating the intestines with CO2 and by the intra-arterial infusion of 2,4-dinitrophenol. VCO2 was decreased by filling the intestines with isotonic tris(hydroxymethyl)methylamine buffer. The maximum range of VCO2 covered was 7.8–51 ml/min, and the mean range was from 13.6 +/- 1.3 to 29.7 +/- 1.6 (SE) ml/min. Although CO2 loading produced a small rise and CO2 unloading a small fall in mean PaCO2, the changes were not statistically significant, so that overall the response was close to isocapnia. Over the limited range of VCO2 studied there was a highly significant linear association between dpH/dt decreases max and VCO2 which supports the contention that the slope of the upstroke of the PaCO2 oscillation is determined by the CO2 flux from mixed venous blood to alveolar gas. As such this slope is a potential chemical signal linking ventilation to CO2 production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []