Protective effects of a small molecule inhibitor ligand against hyperphosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease.

2021 
The purpose of our study is to understand the protective effects of small molecule ligands for phosphorylated tau (p-tau) in Alzheimer's disease (ad) progression. Many reports show evidence that p-tau is reported to be an important contributor to the formation of paired helical filaments (PHFs) and neurofibrillary tangles (NFTs) in ad neurons. In ad, glycogen synthase kinase-3 beta (GSK3β), cyclin-dependent kinase- 5 (CDK5) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), are the three important kinases responsible for tau hyperphosphorylation. Currently, there are no drugs and/or small molecules that reduce the toxicity of p-tau in ad. In the present study, we rationally selected and validated small molecule ligands that binds to the phosphorylated tau at SER23 (Ser 285). We also assessed the molecular dynamics and validated molecular docking sites for the three best ligands. Based on the best docking scores -8.09, -7.9 and - 7.8 kcal/mol, we found that ligand 1 binds to key hyperphosphorylation residues of p-tau that inhibit abnormal PHF-tau, DYRK1A, and GKS3β that reduce p-tau levels in ad. Using biochemical, molecular, immunoblotting, immunofluorescence, and transmission electron microscopy analyses, we studied the ligand 1 inhibition as well as mitochondrial and synaptic protective effects in immortalized primary hippocampal neuronal (HT22) cells. We found interactions between NAT10-262501 (ligand 1) and p-tau at key phosphorylation sites and these ligand-based inhibitions decreased PHF-tau, DYRK1A and GSK3β levels. We also found increased mitochondrial biogenesis, mitochondrial fusion and synaptic activities and reduced mitochondrial fission in ligand 1-treated mutant tau HT22 cells. Based on these results, we cautiously conclude that p-tau NAT10-262501 (ligand 1) reduces hyperphosphorylation of tau based GKS3β and CDK5 kinase regulation in ad, and aids in the maintenance of neuronal structure, mitochondrial dynamics, and biogenesis with a possible therapeutic drug target for ad.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    5
    Citations
    NaN
    KQI
    []