Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention

2016 
Extensive full-thickness skin loss, associated with deep burns or other traumata, represents a major clinical problem that is far from being solved. A promising approach to treat large skin defects is the use of tissue-engineered full-thickness skin analogues with nearly normal anatomy and function. In addition to excellent biological properties, such skin substitutes should exhibit optimal structural and mechanical features. This study aimed to test novel dermo-epidermal skin substitutes based on collagen type I hydrogels, physically strengthened by two types of polymeric net-like meshes. One mesh has already been used in clinical trials for treating inguinal hernia; the second one is new but consists of a FDA-approved polymer. Both meshes were integrated into collagen type I hydrogels and dermo-epidermal skin substitutes were generated. Skin substitutes were transplanted onto immuno-incompetent rats and analyzed after distinct time periods. The skin substitutes homogeneously developed into a well-stratified epidermis over the entire surface of the grafts. The epidermis deposited a continuous basement membrane and dermo-epidermal junction, displayed a well-defined basal cell layer, about 10 suprabasal strata and a stratum corneum. Additionally, the dermal component of the grafts was well vascularized. Copyright (c) 2012 John Wiley & Sons, Ltd.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    26
    Citations
    NaN
    KQI
    []