Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation

2019 
Subwavelength photocathodes for photoelectrochemical (PEC) hydrogen production are fabricated by the metal-assisted chemical etching (MacEtch) of GaAs substrates. MacEtch allows subwavelength-structured (SWS) texturing on the GaAs surface without compromising crystallinity. The current density increases greatly, which is directly due to the reduction in the reflectance. Photons absorbed under reduced light reflectance are less affected by the charge recombination arising from crystal defects. The catalytic metal remaining after MacEtch serves as a catalyst for water spitting and increases the open-circuit potentials of the SWS GaAs photocathodes. The SWS GaAs not only amplifies the absorption of light, but also improves the collection of deeply generated photons at long wavelengths. The solar-weighted reflectance (SWR) of SWS GaAs is 6.6%, which was much lower than the 39.0% of bare GaAs. The light-limited photocurrent density (LLPC) increased by approximately 90% and the Tafel slope improved as etching progressed. The external quantum efficiency was as high as 80%, especially at long wavelengths, after MacEtch. SWS GaAs photocathodes fabricated using MacEtch significantly reduce reflectance and recombination loss, thereby improving the key performance of PEC for hydrogen production. This technology can fully utilize the high absorption rate and carrier mobility of GaAs and is applicable to various photoelectric conversion device performance enhancements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    6
    Citations
    NaN
    KQI
    []