Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks.

2021 
Spatiotemporal (4D) cortical surface atlas during infancy plays an important role for surface-based visualization, normalization and analysis of the dynamic early brain development. Conventional atlas construction methods typically rely on classical group-wise registration on sub-populations and ignore longitudinal constraints, thus having three main issues: 1) constructing templates at discrete time points; 2) resulting in longitudinal inconsistency among different age’s atlases; and 3) taking extremely long runtime. To address these issues, in this paper, we propose a fast unsupervised learning-based surface atlas construction framework incorporating longitudinal constraints to enforce the within-subject temporal correspondence in the atlas space. To well handle the difficulties of learning large deformations, we propose a multi-level multi-modal spherical registration network to perform cortical surface registration in a coarse-to-fine manner. Thus, only small deformations need to be estimated at each resolution level using the registration network, which further improves registration accuracy and atlas quality. Our constructed 4D infant cortical surface atlas based on 625 longitudinal scans from 291 infants is temporally continuous, in contrast to the state-of-the-art UNC 4D Infant Surface Atlas, which only provides the atlases at a few discrete sparse time points. By evaluating the intra- and inter-subject spatial normalization accuracy after alignment onto the atlas, our atlas demonstrates more detailed and fine-grained cortical patterns, thus leading to higher accuracy in surface registration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []