Temporal correlation of solar hard X-ray bursts with chromospheric evaporation

1994 
During the impulsive phase of many solar flares, blueshifted emission wings are observed on the soft X-ray spectral lines of highly excited ions that are produced in the flare plasma. This emission has been commonly interpreted as chromospheric evaporation of material from the footpoints of coronal loops by non-thermal particle beams, although the question of whether the bulk of the energy is carried by electrons or ions (protons) has been the subject of much debate. The precise temporal relationship between the onsets of the blueshifted emission and the hard X-ray bursts is particularly important in resolving the mechanism of energy transfer to the hot plasma in the impulsive phase. A sample of flares observed with the Bragg Crystal Spectrometer (BCS) onYohkoh has been analysed for blueshifted emission and the results compared with hard X-ray light turves obtained with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO). In some flares, the blueshifted emission precedes the onset of the hard X-rays by up to 100 s. There is no evidence for a temporal correlation between the maximum energy input to the hard X-ray bursts and the maximum blueshifted intensity. These results lend support to those models favouring protons as the dominant energy carrier in the impulsive phase of flares and are inconsistent with the hypothesis that the bulk of the energy resides in electron beatos, although some other energy input, while unlikely, cannot be completely eliminated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    20
    Citations
    NaN
    KQI
    []