Wave Generation and Wave-Particle Interaction Using Space-Based, RF, Linear Electron Accelerators

2021 
Active experiments in space provide the opportunity to perturb the natural environment with known and controllable conditions. As such, active experiments are well-suited to studying wave-particle and wave-wave interactions. Active experiments were much more common in the 1970's and 1980's than they are today. Results from rockets, the Space Shuttle, and satellites provided important contributions to our understanding of both linear and non-linear plasma physics. New technologies provide new opportunities for using electron beams to probe the physics of the magnetosphere and, in particular, the radiation belts. In particular, newly-developed RF linear accelerator (linac) technologies can finally be adapted for space enabling much more powerful and flexible options for electron beam wave generation. Similarly, wave receivers, particle detectors, digital electronics, and high telemetry rates now allow detailed measurements of the artificially-generated waves and their effects on the local plasma environment. Specifically, full waveform capture of the 3D electric and magnetic fields allow detailed understanding of the properties of the waves including spectra, wave normal distributions, polarization, etc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []