Cutting edge: a novel nonoxidative phagosomal mechanism exerted by cathepsin-D controls Listeria monocytogenes intracellular growth.

2006 
Deciphering how Listeria monocytogenes exploits the host cell machinery to invade mammalian cells is a key issue in understanding the pathogenesis of this food-borne pathogen, which can cause diseases ranging from gastroenteritis to meningitis and abortion. In this study, we show that the lysosomal aspartyl-protease cathepsin-D (Ctsd) is of considerable importance for nonoxidative listericidal defense mechanisms. We observed enhanced susceptibility to L. monocytogenes infection of fibroblasts and bone-marrow macrophages and increased intraphagosomal viability of bacteria in fibroblasts isolated from Ctsd-deficient mice compared with wild type. These findings are further supported by prolonged survival of L. monocytogenes in Ctsd-deficient mice after infection. Transient transfection of Ctsd in wild-type cells was sufficient to revert these wild-type phagosomes back to microbicidal compartments. Based on infection experiments with mutant bacteria, in vitro degradation, and immunoprecipitation experiments, we suggest that a major target of cathepsin D is the main virulence factor listeriolysin O.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    49
    Citations
    NaN
    KQI
    []