Abstract B42: Dysregulation of key microRNAs controlling tumor-host interactions triggers escape from osteosarcoma dormancy

2016 
The presence of dormant, microscopic cancerous lesions possesses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized a human osteosarcoma dormancy model of a pair of cells originating from the same parental tissue; one that remains avascular and non-palpable a year following inoculation into mice and another that generates vascularized palpable tumors one month following inoculation. Using this model of cell lines generating dormant or fast-growing osteosarcomas, we identified three novel regulators of osteosarcoma dormancy: miR-34a, miR-93 and miR-200c. This is the first report showing that loss of these three microRNAs occurs during the switch from dormant avascular into fast-growing angiogenic phenotype. Furthermore, we validated their downregulation in patients9 tumor samples compared to normal bone, making them attractive candidates for osteosarcoma therapy. Reconstitution of these microRNAs into Soas-2 and MG-63 cells, which generate fast-growing osteosarcomas, reduced the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1α, and moesin, critical to cancer angiogenesis and cancer cells9 migration. We further demonstrate that these miRNAs attenuate the angiogenic capabilities of fast-growing osteosarcoma in vitro and in vivo. Moreover, treatment with each of these microRNAs using our novel polyglycerol dendritic nanocarrier significantly prolonged their dormancy period. Taken together, these findings suggest that miR-34a, miR-93 and miR-200c have a key role in osteosarcoma progression, and provide the rationale for the development of novel diagnostic and therapeutic tools for osteosarcoma and other malignancies. Citation Format: Galia Tiram, Paula Ofek, Taturo Udagawa, Noam Shomron, Maayan Roniger, Batsheva Kerem, Yuval Shaked, Sarit Aviel-Ronen, Iris Barshack, Marcelo Calderon, Rainer Haag, Ronit Satchi-Fainaro. Dysregulation of key microRNAs controlling tumor-host interactions triggers escape from osteosarcoma dormancy. [abstract]. In: Proceedings of the AACR Special Conference: Function of Tumor Microenvironment in Cancer Progression; 2016 Jan 7–10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2016;76(15 Suppl):Abstract nr B42.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []