Observations of cross-frontal exchange associated with submesoscale features along the North Wall of the Gulf Stream

2020 
Abstract Using high-resolution measurements of the Gulf Stream North Wall (GSNW), we investigated whether detachments from the warm current at the edge of the front, known as streamers, affect the overall heat and salt content of the region. Temperature, salinity, and velocity data were collected across the front from towed CTDs, shipboard ADCPs, and gliders following a Lagrangian drifter that was deployed at the GSNW during winter 2012. Four streamers were identified, all of which expanded laterally 10–15 km, with vertical salinity interleaving down to a 200 m depth. We observed that temperature and salinity (T/S) increased along the trajectory of the Lagrangian float. These trends were density compensated and ranged from the surface down to a 200 m depth and across a 5 km band. The heat and salt budget analysis showed that surface fluxes, advection due to large-scale circulation, and diapycnal mixing could not explain the observed increase in T/S in the mixed layer and in the subsurface area. The only possible source that could explained the increase in T/S was along-isopycnal mixing. Estimates of the Reynolds transport supported this conclusion, although the low number of realizations meant these estimates were not statistically significant. From the heat and salt budgets, we observed that an along-isopycnal diffusivity, κ i , of 110 ± 30 m 2 s − 1 accounted for the estimated residual and matched the Reynolds transport estimates. This value of κ i is consistent with other studies that assert that lateral mixing is required for the production of Eighteen Degree Water (EDW) subtropical mode water.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []