Satellite Retrieval of Air Pollution Changes in Central and Eastern China during COVID-19 Lockdown Based on a Machine Learning Model

2021 
With the implementation of the 2018–2020 Clean Air Action Plan (CAAP) the and impact from COVID-19 lockdowns in 2020, air pollution emissions in central and eastern China have decreased markedly. Here, by combining satellite remote sensing, re-analysis, and ground-based observational data, we established a machine learning (ML) model to analyze annual and seasonal changes in primary air pollutants in 2020 compared to 2018 and 2019 over central and eastern China. The root mean squared errors (RMSE) for the PM2.5, PM10, O3, and CO validation dataset were 9.027 μg/m3, 20.312 μg/m3, 10.436 μg/m3, and 0.097 mg/m3, respectively. The geographical random forest (RF) model demonstrated good performance for four main air pollutants. Notably, PM2.5, PM10, and CO decreased by 44.1%, 43.2%, and 35.9% in February 2020, which was likely influenced by the COVID-19 lockdown and primarily lasted until May 2020. Furthermore, PM2.5, PM10, O3, and CO decreased by 16.4%, 24.2%, 2.7%, and 19.8% in 2020 relative to the average values in 2018 and 2019. Moreover, the reduction in O3 emissions was not universal, with a significant increase (~20–40%) observed in uncontaminated areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []