Vibration-mediated resonant charge separation across the donor–acceptor interface in an organic photovoltaic device

2021 
Examination of a recent open-system Ehrenfest dynamics simulation suggests that a vibration-mediate resonance may play a pivotal role in the charge transfer across a donor–acceptor interface in an organic solar cell. Based on this, a concise dissipative two-level electronic system coupled to a molecular vibrational mode is proposed and solved quantum mechanically. It is found that the charge transfer is enhanced substantially when the vibrational energy quanta is equal to the electronic energy loss across the interface. This vibration-mediate resonant charge transfer process is ultrafast, occurring within 100 fs, comparable to experimental findings. The open-system Ehrenfest dynamics simulation of the two-level model is carried out, and similar results are obtained, which confirms further that the earlier open-system Ehrenfest dynamics simulation indeed correctly predicted the occurrence of the resonant charge transfer across the donor–acceptor interface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []