Targeting Infiltrating Myeloid Cells in Gastric Cancer Using a Pretargeted Imaging Strategy Based on Bio-Orthogonal Diels-Alder Click Chemistry and Comparison with 89Zr-Labeled Anti-CD11b Positron Emission Tomography Imaging.

2021 
Gastric cancer (GC) is a common cancer worldwide, with high incidence and mortality rates. Therefore, early and precise diagnosis is critical to improving GC prognosis. Tumor-associated myeloid cells infiltrate the tumor microenvironment (TME) and can produce immunosuppressive effects in the early stage of the tumor. The surface integrin receptor CD11b is widely expressed in the specific subsets of myeloid cells, and it has the characteristics of high abundance, high specificity, and high potential for targeted immunotherapy. In this study, two strategies for labeling anti-CD11b, including 89Zr-DFO-anti-CD11b and pretargeted imaging (68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO), were used to evaluate the value of early diagnosis of GC and confirm the advantages of the pretargeted strategy for the diagnosis of GC. Pretargeted molecular probe 68Ga-NOTA-polypeptide-PEG11-Tz was synthesized. The binding affinity of the Tz-radioligand to CD11b was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Moreover, the anti-CD11b antibody was conjugated with a p-isothiocyanatobenzyl-desferrioxamine (SCN-DFO) chelator and radiolabeled with zirconium-89. Biodistribution and positron-emission computed tomography imaging experiments were performed in MGC-803 tumor-bearing model mice to evaluate the value of the early diagnosis of GC. Histological evaluation of MGC-803 tumors was conducted to confirm the infiltration of the GC TME with CD11b+ myeloid cells. 68Ga-NOTA-polypeptide-PEG11-Tz was successfully radiosynthesized, with the radiochemical purity above 95%, as confirmed by reversed-phase high-performance liquid chromatography. The radioligand showed favorable stability in normal saline and phosphate-buffered saline, good affinity to RAW264.7 cells, and rapid blood clearance in mice. The results of biodistribution and imaging experiments using the pretargeted method showed that the tumor/muscle ratios were 5.17 ± 2.98, 5.94 ± 1.46, and 4.46 ± 2.73 at the pretargeting intervals of 24, 48, and 72 h, respectively. The experimental results using the method of the directly labeling antibody (89Zr-DFO-anti-CD11b) showed that, despite radioactive accumulation in the tumor, there was a higher level of radioactive accumulation in normal tissues. The tumor/muscle ratios were 1.09 ± 0.67, 1.66 ± 0.95, 2.94 ± 1.24, 3.64 ± 1.21, and 3.55 ± 1.64 at 1, 24, 48, 72, and 120 h. The current research proved the value of 68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO in the diagnosis of GC using the pretargeted strategy. Compared to 89Zr-DFO-anti-CD11b, the image contrast achieved by the pretargeted strategy was relatively improved, and the background accumulation of the probe was relatively low. These advantages can improve the diagnostic efficiency for GC and provide supporting evidence for radioimmunotherapy targeting CD11b receptors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []