Exploring Deep Learning for Air Pollutant Emission Estimation

2021 
Abstract. The inaccuracy of anthropogenic emission inventory on a high-resolution scale due to insufficient basic data is one of the major reasons for the deviation between air quality model and observation results. A bottom-up approach, as a typical emission inventory estimation approach, requires a lot of human labor and material resources, and a top-down approach focuses on individual pollutants that can be measured directly and relies heavily on traditional numerical modelling. Lately, deep neural network has achieved rapid development due to its high efficiency and non-linear expression ability. In this study, we proposed a novel method to model the dual relationship between emission inventory and pollution concentration for emission inventory estimation. Specifically, we utilized a neural network based comprehensive chemical transport model (NN-CTM) to learn the complex correlation between emission and air pollution. We further updated the emission inventory based on backpropagating the gradient of the loss function measuring the deviation between NN-CTM and observations from surface monitors. We first mimicked the CTM model with neural networks (NN) and achieved a relatively good representation of CTM with similarity reaching 95 %. To reduce the gap between CTM and observations, the NN model would suggest an updated emission of NOx, NH3, SO2, VOC and primary PM2.5 which changes by −1.34 %, −2.65 %, −11.66 %, −19.19 % and 3.51 %, respectively, on average of China. Such ratios of NOx and PM2.5 are even higher (~10 %) particularly in Northwest China where suffers from large uncertainties in original emissions. The updated emission inventory can improve model performance and make it closer to observations. The mean absolute error for NO2, SO2, O3 and PM2.5 concentrations are reduced significantly by about 10 %~20 %, indicating the high feasibility of NN-CTM in terms of significantly improving both the accuracy of emission inventory as well as the performance of air quality model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []