Lentiviral Vector-Induced Overexpression of RGMa in the Hippocampus Suppresses Seizures and Mossy Fiber Sprouting

2017 
Repulsive guidance molecule a (RGMa) is a membrane-bound protein that inhibits axon outgrowth in the central nervous system. Temporal lobe epilepsy (TLE) is a common neurological disorder characterized by recurrent spontaneous seizures. To explore the role of RGMa in epilepsy, we investigated the expression of RGMa in patients with TLE, pilocarpine-induced rat model, and pentylenetetrazol kindling model of epilepsy, and then we performed behavioral, histological, and electrophysiological analysis by lentivirus-mediated overexpression of RGMa in the hippocampus of animal model. We found that RGMa was significantly decreased in TLE patients and in experimental rats from 6 h to 60 days after pilocarpine-induced seizures. In two types of epileptic animal models, pilocarpine-induced model and pentylenetetrazol kindling model, overexpression of RGMa in the hippocampus of rats exerted seizure-suppressant effects. The reduced spontaneous seizures were accompanied by attenuation of hippocampal mossy fiber sprouting. In addition, overexpression of RGMa inhibited hyperexcitability of hippocampal neurons via suppressing NMDAR-mediated currents in Mg2+-free-induced organotypic slice model. Collectively, these results demonstrate that overexpression of RGMa could be an alternative strategy for epilepsy therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    8
    Citations
    NaN
    KQI
    []