Involvement of Ras/Raf-1/ERK actions in the magnolol-induced upregulation of p21 and cell-cycle arrest in colon cancer cells

2007 
Previously, we showed that magnolol induces cell-cycle arrest in cultured colon and liver cancer cells through an upregulation of the p21 protein [1]. The aim of this study was to delineate the molecular mechanism underlying this magnolol-induced increase of p21 protein. Thus our RT-PCR analysis demonstrated that the mRNA levels of p21 were increased at 1 h after magnolol treatment and sustained for at least 24 h. The p21 promoter activity was also increased by magnolol treatment. Western blot analysis demonstrated that treatment of COLO-205 cells with magnolol increased the levels of phosphorylation of extracellular signal-regulated kinase (ERK). Pretreatment of the cells with PD98059 abolished the magnolol-induced upregulation of p21 protein, suggesting the involvement of an ERK pathway in the magnolol-induced upregulation of p21 in COLO-205 cells. Ras inhibitor peptide abolished the magnolol-induced increase of phosphorylated ERK protein levels, increase of p21 protein, and decrease of thymidine incorporation. Moreover, treatment of COLO-205 with magnolol increased the phosphorylated Raf-1 protein (the Ras target molecule). Pretreatment of the cells with Raf-1 inhibitor reversed the magnolol-induced decrease in thymidine incorporation. Treatment of the cells with CaM kinase inhibitor, but not protein kinase A (PKA) inhibitor or phosphatidylinosital 3-kinase (PI3K) inhibitor, abolished the magnolol-induced activation of ERK and decrease of thymidine incorporation. Taken together, our results suggest that magnolol activates ERK phosphorylation through a Ras/Raf-1-mediated pathway. Subsequently, p21 expression is increased, and finally thymidine incorporation is decreased. © 2007 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    39
    Citations
    NaN
    KQI
    []