Nutritional Immunity and Antibiotic Drug Treatments Influence Microbial Composition but Fail to Eliminate Urethral Catheter Biofilms in Recurrently Catheterized Patients

2019 
Polymicrobial biofilms that form on indwelling urethral catheters used by neurogenic bladder patients are known to recur following catheter replacements. Uropathogens dominate in catheter biofilms (CBs), grow and disperse as multi-cellular aggregates. Their microbial complexity, the characteristics of host immune responses and the molecular crosstalk in this ecosystem are incompletely understood. By surveying eight patients over up to six months with meta-omics analysis methods, we shed new light on the longitudinal microbial dynamics in CBs and the microbial-host crosstalk. There was evidence of chronic innate immune responses in all patients. Pathogens dominated the microbial contents. Proteus mirabilis often out-competed other species in cases of salt encrustation of catheters. The examination of proteomes in CBs and associated urinary pellets revealed many abundant bacterial systems for transition metal ion (TMI) acquisition. TMIs are sequestered by effector proteins released by activated neutrophils and urothelial cells, such as lactotransferrin and calgranulins, which were abundant in the host proteomes. We identified positive quantitative correlations among systems responsible for siderophore biosynthesis, TMI/siderophore uptake and TMI cellular import in bacterial species, suggesting competition for TMIs to support their metabolism and growth in CBs. Enterococcus faecalis was prevalent as a cohabitant of CBs and expressed three lipoproteins with apparent TMI acquisition functions. Fastidious anaerobic bacteria such as Veillonella, Actinobaculum, and Bifidobacterium grew in CB communities that appeared to be oxygen starved. Finally, antibiotic drug treatments were shown to influence microbial composition of CBs but failed to prevent re-colonization of urethral catheters with persisting and/or drug-resistant newly emerging pathogens.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    79
    References
    0
    Citations
    NaN
    KQI
    []