Unveiling early black hole growth with multi-frequency gravitational wave observations

2020 
Third Generation ground based Gravitational Wave Interferometers, like the Einstein Telescope (ET), Cosmic Explorer (CE), and the Laser Interferometer Space Antenna (LISA) will detectcoalescing binary black holes over a wide mass spectrum and across all cosmic epochs. We track the cosmological growth of the earliest light and heavy seeds that swiftly transit into the supermassive domain using a semi analytical model for the formation of quasars at $z=6.4$, 2 and $0.2$, in which we follow black hole coalescences driven by triple interactions. We find that light seed binaries of several $10^2$ M$_\odot$ are accessible to ET with a signal-to-noise ratio ($S/N$) of $10-20$ at $6 20$). Mergers involving heavy seeds ($\sim 10^5 M_\odot - 10^6 M_\odot$) would be within reach up to $z=20$ in the LISA frequency domain. The lower-z model predicts $11.25(18.7)$ ET(LISA) events per year, overall.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    175
    References
    6
    Citations
    NaN
    KQI
    []