Spatiotemporal model for FRET networks with multiple donors and acceptors: Multicomponent exponential decay derived from the master equation

2020 
In networks of spatially distributed fluorescent molecules, Forster resonance energy transfer (FRET) can simultaneously occur over multiple locations and times. Such “FRET networks” have great potential for information-processing and computing applications. To design these applications, the spatiotemporal behavior of FRET networks should be understood. However, studies on their spatiotemporal behavior are scarce. Here, we develop a spatiotemporal model for FRET networks and uncover its temporal characteristic behavior. We theoretically show that our model can generate a distinctive temporal behavior, i.e., the network-induced multicomponent exponential decay of the fluorescence intensity, even for FRET networks of fluorophores with an identical single exponential decay. This theoretical result is supported experimentally using quantum dots.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []