Microemulsion-assisted solvothermal synthesis of Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O microstructures

2011 
Research highlights: {yields} Pyramid-like and spherical Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O microstructures were synthesized using a microemulsion-assisted solvothermal method with precise control of the reaction time and reaction temperature. {yields} The obtained products were characterized by X-ray diffraction (XRD), differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron diffraction (ED). {yields} The increase in size of pyramid-like Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O microstructures with increasing reaction time was attributed to the typical Ostwald ripening process, while the increase in size of spherical Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O microstructures with increasing reaction temperature was explained by the increasing collision probability of microemulsion droplets. -- Abstract: Microstructures of Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O with various morphological structures and sizes were successfully synthesized using the microemulsion-assisted solvothermal method. The obtained products were characterized by X-ray diffraction (XRD), differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron diffraction (ED). The results showed that pyramid-like and spherical Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O microstructures were synthesized depending on the reaction time and reaction temperature. Moreover, the reaction time and temperature also played important roles in controlling the morphologiesmore » and sizes of the resulting Nd{sub 2}(CO{sub 3}){sub 3}.8H{sub 2}O microstructures.« less
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []